Keysight K281C

Coaxial Waveguide Adapter

Technical Overview

Specifications:

Specifications describe the product's warranted performance. Supplemental and typical characteristics are intended to provide typical but non-warranted performance parameters. These are denoted as "typical", "nominal" or "approximate".

Model number	K281C
Frequency range	18 to 26.5 GHz
Maximum SWR	1.07
Coaxial connector	3.5 mm (f)
	Option 012: 3.5
	mm (m)

Physical Dimensions:

Shipping Weight: 0.5 kg (1.1 lb)

Supplemental Characteristics:

Waveguide ¹	EIA: WR-42
designator	MIL-W-85/: 1-103
Flange ¹ designator	UG-: 597/U
	MIL-F-3922/:54C-002

 The Waveguide/Flange Designator is provided to determine interface dimensions and generic material of Keysight products.

Ordering Information:

K281C 18 to 26.5 GHz coaxial waveguide adapter

- Option 012 3.5 mm (male) connector

www.keysight.com/find/mta

For more information on Keysight Technologies' products, applications or services, please contact your local Keysight office. The complete list is available at: www.keysight.com/find/contactus

This information is subject to change without notice. © Keysight Technologies, 2011 - 2017
Published in USA, December 5, 2017
5990-9520EN
www.keysight.com

Key Features

Bi-directional, power can be transmitted in either direction.

- Excellent repeatability.
- Measurement versatility

The Keysight Technologies, Inc. K281C coaxial waveguide adapter provides a convenient way of coupling between waveguide and coaxial systems. Power can be transmitted in eithe r direction and each adapter covers the full frequency range of its waveguide size. A step-like internal structure transforms the waveguide impedance to the 50 Ω impedance of the coaxial line.

